19 research outputs found

    Intelligent video surveillance

    Get PDF
    In the focus of this thesis are the new and modified algorithms for object detection, recognition and tracking within the context of video analytics. The manual video surveillance has been proven to have low effectiveness and, at the same time, high expense because of the need in manual labour of operators, which are additionally prone to erroneous decisions. Along with increase of the number of surveillance cameras, there is a strong need to push for automatisation of the video analytics. The benefits of this approach can be found both in military and civilian applications. For military applications, it can help in localisation and tracking of objects of interest. For civilian applications, the similar object localisation procedures can make the criminal investigations more effective, extracting the meaningful data from the massive video footage. Recently, the wide accessibility of consumer unmanned aerial vehicles has become a new threat as even the simplest and cheapest airborne vessels can carry some cargo that means they can be upgraded to a serious weapon. Additionally they can be used for spying that imposes a threat to a private life. The autonomous car driving systems are now impossible without applying machine vision methods. The industrial applications require automatic quality control, including non-destructive methods and particularly methods based on the video analysis. All these applications give a strong evidence in a practical need in machine vision algorithms for object detection, tracking and classification and gave a reason for writing this thesis. The contributions to knowledge of the thesis consist of two main parts: video tracking and object detection and recognition, unified by the common idea of its applicability to video analytics problems. The novel algorithms for object detection and tracking, described in this thesis, are unsupervised and have only a small number of parameters. The approach is based on rigid motion segmentation by Bayesian filtering. The Bayesian filter, which was proposed specially for this method and contributes to its novelty, is formulated as a generic approach, and then applied to the video analytics problems. The method is augmented with optional object coordinate estimation using plain two-dimensional terrain assumption which gives a basis for the algorithm usage inside larger sensor data fusion models. The proposed approach for object detection and classification is based on the evolving systems concept and the new Typicality-Eccentricity Data Analytics (TEDA) framework. The methods are capable of solving classical problems of data mining: clustering, classification, and regression. The methods are proposed in a domain-independent way and are capable of addressing shift and drift of the data streams. Examples are given for the clustering and classification of the imagery data. For all the developed algorithms, the experiments have shown sustainable results on the testing data. The practical applications of the proposed algorithms are carefully examined and tested

    Evolving clustering, classification and regression with TEDA

    Get PDF
    In this article the novel clustering and regression methods TEDACluster and TEDAPredict methods are described additionally to recently proposed evolving classifier TEDAClass. The algorithms for classification, clustering and regression are based on the recently proposed AnYa type fuzzy rule based system. The novel methods use the recently proposed TEDA framework capable of recursive processing of large amounts of data. The framework is capable of computationally cheap exact update of data per sample, and can be used for training `from scratch'. All three algorithms are evolving that is they are capable of changing its own structure during the update stage, which allows to follow the changes within the model pattern

    Multiple video object tracking using variational inference

    Get PDF
    In this article a Bayesian filter approximation is proposed for simultaneous multiple target detection and tracking and then applied for object detection on video from moving camera. The inference uses the evidence lower bound optimisation for Gaussian mixtures. The proposed filter is capable of real time data processing and may be used as a basis for data fusion. The method we propose was tested on the video with dynamic background,where the velocity with respect to the background is used to discriminate the objects. The framework does not depend on the feature space, that means that different feature spaces can be unrestrictedly used while preserving the structure of the filter

    Data fusion for unsupervised video object detection, tracking and geo-positioning

    Get PDF
    In this work we describe a system and propose a novel algorithm for moving object detection and tracking based on video feed. Apart of many well-known algorithms, it performs detection in unsupervised style, using velocity criteria for the objects detection. The algorithm utilises data from a single camera and Inertial Measurement Unit (IMU) sensors and performs fusion of video and sensory data captured from the UAV. The algorithm includes object tracking and detection, augmented by object geographical co-ordinates estimation. The algorithm can be generalised for any particular video sensor and is not restricted to any specific applications. For object tracking, Bayesian filter scheme combined with approximate inference is utilised. Object localisation in real-world co-ordinates is based on the tracking results and IMU sensor measurements

    Empirical data analytics

    Get PDF
    In this paper, we propose an approach to data analysis, which is based entirely on the empirical observations of discrete data samples and the relative proximity of these points in the data space. At the core of the proposed new approach is the typicality—an empirically derived quantity that resembles probability. This nonparametric measure is a normalized form of the square centrality (centrality is a measure of closeness used in graph theory). It is also closely linked to the cumulative proximity and eccentricity (a measure of the tail of the distributions that is very useful for anomaly detection and analysis of extreme values). In this paper, we introduce and study two types of typicality, namely its local and global versions. The local typicality resembles the well-known probability density function (pdf), probability mass function, and fuzzy set membership but differs from all of them. The global typicality, on the other hand, resembles well-known histograms but also differs from them. A distinctive feature of the proposed new approach, empirical data analysis (EDA), is that it is not limited by restrictive impractical prior assumptions about the data generation model as the traditional probability theory and statistical learning approaches are. Moreover, it does not require an explicit and binary assumption of either randomness or determinism of the empirically observed data, their independence, or even their number (it can be as low as a couple of data samples). The typicality is considered as a fundamental quantity in the pattern analysis, which is derived directly from data and is stated in a discrete form in contrast to the traditional approach where a continuous pdf is assumed a priori and estimated from data afterward. The typicality introduced in this paper is free from the paradoxes of the pdf. Typicality is objectivist while the fuzzy sets and the belief-based branch of the probability theory are subjectivist. The local typicality is expressed in a closed analytical form and can be calculated recursively, thus, computationally very efficiently. The other nonparametric ensemble properties of the data introduced and studied in this paper, namely, the square centrality, cumulative proximity, and eccentricity, can also be updated recursively for various types of distance metrics. Finally, a new type of classifier called naïve typicality-based EDA class is introduced, which is based on the newly introduced global typicality. This is only one of the wide range of possible applications of EDA including but not limited for anomaly detection, clustering, classification, control, prediction, control, rare events analysis, etc., which will be the subject of further research

    Evolving classifier TEDAClass for big data

    Get PDF
    In the era of big data, huge amounts of data are generated and updated every day, and their processing and analysis is an important challenge today. In order to tackle this challenge, it is necessary to develop specific techniques which can process large volume of data within limited run times. TEDA is a new systematic framework for data analytics, which is based on the typicality and eccentricity of the data. This framework is spatially-aware, non-frequentist and non-parametric. TEDA can be used for development of alternative machine learning methods, in this work, we will use it for classification (TEDAClass). Specifically, we present a TEDAClass based approach which can process huge amounts of data items using a novel parallelization technique. Using this parallelization, we make possible the scalability of TEDAClass. In that way, the proposed approach is particularly useful for various applications, as it opens the doors for high-performance big data processing, which could be particularly useful for healthcare, banking, scientific and many other purposes

    Acknowledgement to reviewers of informatics in 2018

    Get PDF
    corecore